Ajit Varma

  • Climate Change and the Microbiome Nouv.

    This book highlights the impact of climate change on the soil microbiome and its subsequent effects on plant health, soil-plant dynamics, and the ecosphere. It also discusses emerging ideas to counteract these effects, e.g., through agricultural applications of functional microbes, to ensure a sustainable ecosystem.Climate change is altering the soil microbiome distributions and thus the interactions in microbiome and plant-soil microorganism. Improvement of our understanding of microbe-microbe and plant-microbe interaction under changing climatic conditions is essential, because the overall impact of these interactions under varying adverse environmental conditions is lacking. This book has been designed to understand the impact of climate change, i.e., mainly salt and drought stress, on the soil microbiome and its impact on plant, yield, and the ecosphere.The book is organized into four parts: The first part reviews the impact of climate change on the diversity and richness of the soil microbiome. The second part addresses effects of climate change on plant health. The third part discusses effects on soil-plant dynamics and functionality, e.g., soil productivity. The final part deals with the effects of climate change on ecosystem functioning and also discusses potential solutions.The book will appeal to students and researchers working in the area of soil science, agriculture, molecular biology, plant physiology, and biotechnology. 

  • This book gives a comprehensive overview on the various aspects of Trichoderma, a filamentous fungus ubiquitously present in soil. Topics addressed are the biology, diversity, taxonomy, ecology, biotechnology and cultivation of Trichoderma, to just name a few. Basic as well as applied aspects are covered and a special focus is given on use of Trichoderma in agriculture and beyond. Trichoderma species are widely distributed throughout the world in soil, rotting plant material, and wood. Although they are often considered as a contaminants, Trichoderma species are also known for their ability to act as biocontrol agents against various plant pathogens and plant diseases, and also as biostimulants promoting plant growth. The contents of this book will be of particular interest to, agricultural scientists, biotechnologists, plant pathologists, mycologists, and microbiologists, students, extension workers, policy makers and other stakeholders. 

  • Several nano-scale devices have emerged that are capable of analysing plant diseases, nutrient deficiencies and any other ailments that may affect food security in agro-ecosystems.  It has been envisioned that smart delivery systems can be developed and utilised for better management of agricultural ecosystems. These systems could exhibit beneficial, multi-functional characteristics, which could be used to assess and also control habitat-imposed stresses to crops.Nanoparticle-mediated smart delivery systems can control the delivery of nutrients or bioactive and/or pesticide molecules in plants. It has been suggested that nano-particles in plants might help determine their nutrient status and could also be used as cures in agro-ecosystems. Further, to enhance soil and crop productivity, nanotechnology has been used to create and deliver nano fertilizers, which can be defined as nano-particles that directly help supply nutrients for plant growth and soil productivity. 
    Nano-particles can be absorbed onto clay networks, leading to improved soil health and more efficient nutrient use by crops. Additionally, fertilizer particles can be coated with nano-particles that facilitate slow and steady release of nutrients, reducing loss of nutrients and enhancing their efficiency in agri-crops. 
    Although the use of nanotechnology in agro-ecosystems is still in its early stages and needs to be developed further, nano-particle-mediated delivery systems are promising solutions for the successful management of agri-ecosystems. In this context, the book offers insights into nanotechnology in agro-ecosystems with reference to biogenic nanoparticles. It highlights the: 
    o occurrence and diversity of Biogenic Nanoparticleso mechanistic approach involved in the synthesis of biogenic nanoparticleso synthesis of nanoparticles using photo-activation, and their fate in the soil ecosystemo potential applications of nanoparticles in agricultural systemso application and biogenic synthesis of gold nanoparticles and their characterizationo impact of biogenic nanoparticles on biotic stress to plantso mechanistic approaches involved in the antimicrobial effects and cytotoxicity of biogenic nanoparticleso role of biogenic nanoparticles in plant diseases managemento relevance of biological synthesized nanoparticles in the longevity of agricultural crops o design and synthesis of nano-biosensors for monitoring pollutants in water, soil and plant systemso applications of nanotechnology in agriculture with special refer to soil, water and plant sciencesA useful resource for postgraduate and research students in the field of plant and agricultural sciences, it is also of interest to researchers working in nano and biotechnology.

  • This book sheds new light on the role of various environmental factors in regulating the metabolic adaptation of medicinal and aromatic plants. Many of the chapters present cutting-edge findings on the contamination of medicinal plants through horizontal transfer, as well as nanomaterials and the biosynthesis of pharmacologically active compounds. In addition, the book highlights the impacts of environmental factors (e.g., high and low temperature, climate change, global warming, UV irradiation, intense sunlight and shade, ozone, carbon dioxide, drought, salinity, nutrient deficiency, agrochemicals, waste, heavy metals, nanomaterials, weeds, pests and pathogen infections) on medicinal and aromatic plants, emphasizing secondary metabolisms. In recent years, interest has grown in the use of bioactive compounds from natural sources. Medicinal and aromatic plants constitute an important part of the natural environment and agro-ecosystems, and contain a wealth of chemical compounds known as secondary metabolites and including alkaloids, glycosides, essential oils and other miscellaneous active substances. These metabolites help plants cope with environmental and/or external stimuli in a rapid, reversible and ecologically meaningful manner. Additionally, environmental factors play a crucial role in regulating the metabolic yield of these biologically active molecules. Understanding how medicinal plants respond to environmental perturbations and climate change could open new frontiers in plant production and in agriculture, where successive innovation is urgently needed due to the looming challenges in connection with global food security and climate change. Readers will discover a range of revealing perspectives and the latest research on this vital topic.

  • Following a description of the various sources and factors influencing the contents of heavy metal pollution in post-catastrophic and agricultural soils, subsequent chapters examine soil enzymes and eggs as bio-monitors, lead adsorption, the effects of arsenic on microbial diversity, and the effects of Mediterranean grasslands on abandoned mines. A third section focuses on the adaptation strategies used by plants and bacteria, such as Pinus sylvestris in industrial areas, and the rhizosphere in contaminated tropical soils and soil treated with sewage sludge. Further topics addressed include strategies of bioremediation, e.g. using transgenic plants as tools for soil remediation.This new volume on heavy metals in soil will be of interest to researchers and scholars in microbial and plant biotechnology, agriculture, the environmental sciences and soil ecology.

  • This book provides a timely review of concepts in plant disease management involving microbial soil suppressiveness and organic amendments.Topics discussed include the impact of suppressive soils on plant pathogens and agricultural productivity, the enhancement of soil suppressiveness through the application of compost and the development of disease suppressive soils through agronomic management. Further chapters describe diseases caused by phytopathogens, such as Pythium, Fusarium and Rhizoctonia, interaction of rhizobia with soil suppressiveness factors, biocontrol of plant parasitic nematodes by fungi and soil suppressive microorganisms.

  • This book provides in-depth reviews of the role of Rhizobium in agriculture and its biotechnological applications. Individual chapters explore topics such as: the occurrence and distribution of Rhizobium; phenotypic and molecular characteristics of Rhizobium; impact of Rhizobium on other microbial communities in the rhizosphere; N2-fixation ability of Rhizobium; Rhizobium and biotic stress; Rhizobium-mediated restoration of an ecosystem; in silico analysis of the rhizobia pool; further biotechnological perspectives of Rhizobium.

  • This book provides essential molecular techniques and protocols for analyzing microbes that are useful for developing novel bio-chemicals, such as medicines, biofuels, and plant protection substances.The topics and techniques covered include: microbial diversity and composition; microorganisms in the food industry; mass cultivation of sebacinales; host-microbe interaction; targeted gene disruption; function-based metagenomics to reveal the rhizosphere microbiome; mycotoxin biosynthetic pathways; legume-rhizobium symbioses; multidrug transporters of yeast; drug-resistant bacteria; the fungal endophyte piriformospora indica; medicinal plants; arbuscular mycorrhizal fungi; biosurfactants in microbial enhanced oil recovery; and biocontrol of the soybean cyst nematode with root endophytic fungi; as well as microbe-mediated drought tolerance in plants.

  • This is the fourth updated and revised edition of a well-received book that emphasises on fungal diversity, plant productivity and sustainability. It contains new chapters written by leading experts in the field.This book is an up-to-date overview of current progress in mycorrhiza and association with plant productivity and environmental sustainability. The result is a must hands-on guide, ideally suited for agri-biotechnology, soil biology, fungal biology including mycorrhiza and stress management, academia and researchers. The topic of this book is particularly relevant to researchers involved in mycorrhiza, especially to food security and environmental protection.Mycorrhizas are symbioses between fungi and the roots of higher plants. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition and the diversity of natural ecosystems are frequently dependent upon the presence and activity of mycorrhizas. The biotechnological application of mycorrhizas is expected to promote the production of food while maintaining ecologically and economically sustainable production systems.

  • This is the fourth updated and revised edition of a well-received book that emphasises on fungal diversity, plant productivity and sustainability. It contains new chapters written by leading experts in the field.This book is an up-to-date overview of current progress in mycorrhiza and association with plant productivity and environmental sustainability. The result is a must hands-on guide, ideally suited for agri-biotechnology, soil biology, fungal biology including mycorrrhiza and stress management, academia and researchers. The topic of this book is particularly relevant to researchers involved in mycorrhiza, especially to food security and environmental protection. Mycorrhizas are symbioses between fungi and the roots of higher plants. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition and the diversity of natural ecosystems are frequently dependent upon the presence and activity of mycorrhizas. The biotechnological application of mycorrhizas is expected to promote the production of food while maintaining ecologically and economically sustainable production systems.

  • This is the fourth updated and revised edition of a well-received book that emphasises on fungal diversity, plant productivity and sustainability. It contains new chapters written by leading experts in the field.
    This book is an up-to-date overview of current progress in mycorrhiza and association with plant productivity and environmental sustainability. The result is a must hands-on guide, ideally suited for agri-biotechnology, soil biology, fungal biology including mycorrrhiza and stress management, academia and researchers.
    The topic of this book is particularly relevant to researchers involved in mycorrhiza, especially to food security, plant microbe interaction  and environmental protection.
    Mycorrhizas are symbioses between fungi and the roots of higher plants. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition and the diversity of natural ecosystems are frequently dependent upon the presence and activity of mycorrhizas. The biotechnological application of mycorrhizas is expected to promote the production of food while maintaining ecologically and economically sustainable production systems.

  • This book summarizes the current state of knowledge regarding antibiotics and antibiotics resistance genes (ARGs) in the soil environment. It covers a wide range of topics to help readers understand antibiotics and ARGs in soils, the risks they pose for the environment, and options for effective control. In addition, it presents a range of essential tools and methodologies that can be used to address antibiotics and ARGs in a consistent, efficient, and cost-effective manner.Gathering contributions by international experts, the book addresses both theoretical aspects and practical applications.The topics discussed include antibiotics-producing microorganisms; the routes of entry and fate of antibiotics and resistance genes; biomonitoring approaches; dissemination of ARGs in soils; risk assessment; the impact of antibiotics and ARGs on the soil microbial community and other biota; bioremediation and biodegradation approaches; and soil management strategies for antibiotics and ARG-contaminated soils.As such, the book will be of interest to students, researchers and scholars in environmental science and engineering, toxicology, the medical and pharmaceutical sciences, environmental biotechnology, soil sciences, microbial ecology and plant biotechnology.Readers and Journals:1. This new volume on antibiotics and antibiotics resistance genes (ARGs) in the soil environment will be of interest to students, researchers and scholars in environmental science and engineering, toxicology, the medical and pharmaceutical sciences, environmental biotechnology, soil sciences,microbial ecology and plant biotechnology.2. The book will provide government authorities all over the world with effective strategies for the management of antibiotics and antibiotics resistance genes (ARG)- contaminated soil. 3. Gathering contributions by international experts,the book addresses both theoretical aspects and practical applications.

  • Soil microorganisms play a major role in the degradation and recycling of organic material. Microbes are involved in the food web and strongly contribute to soil fertility. In the past, attention was mainly directed towards free-living or particle-bound microorganisms, while the role of intestinal microbes of soil animals has been neglected.
    For the first time, "Intestinal Microorganisms of Termites and Other Invertebrates" focuses on the microbes in gut systems of soil animals. It starts with a profound overview of the biology of soil invertebrates. A major part deals with the gut microbiota of termites, the best investigated gut system of invertebrates. Termites are important soil processors in tropical and subtropical regions. Insight is given into the intestinal microbiota of further relevant primary litter decomposers, such as earthworms, springtails, millipeds, and woodlice. Novel techniques for studying intestinal microbes complete the volume.

  • "Advanced Techniques in Soil Microbiology" presents a wide range of biotechnological methods for application in soil microbiology analysis. These include all essential methods involving molecular biology, immunology, microbiology, and structural biology, such as transcriptome analysis, RNAi technology, molecular matchmaking, RAPD, T-RFLP and FT/MS.
    The techniques and procedures have been selected with the aim of offering practical guides for immediate use in the laboratory. The systems investigated range from individual molecules and cells to entire eukaryotic organisms, with a focus on bacteria, fungi, mycorrhiza, and higher plants. This volume of state-of-the-art, practice oriented methods will be of great use both to the first-timer and to the experienced scientist.

  • The book addresses current public concern about the adverse effect of agrochemicals and their effect on the agro-ecosystem. This book also aims to satisfy and contribute to the increasing interest in understanding the co-operative activities among microbial populations and their interaction with plants. It contains chapters on a variety of interrelated aspects of plant-microbe interactions with a single theme of stress management and sustainable agriculture. The book will be very useful for students, academicians, researcher working on plant-microbe interaction and also for policy makers involved in food security and sustainable agriculture.

  • This book discusses the generation of green energy, providing fundamental scientific information on the availability of sustainable biological resources. It addresses inter- and multidisciplinary topics, including policies and strategies for sustainable energy; the environment and advanced renewable energy technology; electricity generation through solid waste management; and direct electricity generation using microbial fuel cells. It examines the application of the principles and quantitative relationships that define the process - as an effective technique to teach applied aspects of biomass energy technology conversion.  In addition, it describes the latest commercialisation of microbial fuel cell technologies, bio-diesel production from microalgae, fermentation technology based on biobutanol from bacteria, and direct ethanol production from microalgae with attractive illustrations and models developed by corporate sectors.

  • This book describes how microbes can be used as effective and sustainable resources to meet the current challenge of finding suitable and economical solutions for biopharmaceuticals, enzymes, food additives, nutraceuticals, value added biochemicals and microbial fuels, and discusses various aspects of microbial regulatory activity and its applications. It particularly focuses on the design, layout and other relevant issues in industrial microbe applications. Moreover, it discusses the entire microbial-product supply chain, from manufacturing sites to end users, both in domestic and international markets, providing insights into the global marketing of microbes and microbial biomass-derived products. Further, it includes topics concerning the effective production and utilization of eco-friendly biotechnology industries. It offers a valuable, ready-to-use guide for technologists and policymakers developing new biotechnologies.

  • This book covers broad areas in the conservation of microorganisms. It addresses the short, medium and long-term preservation of agriculturally important microorganisms, as well as culture collections and their roles. The respective chapters address topics such as conventional approaches to bacterial, fungal and algal preservation, as well as methods and strategies for preserving recalcitrant microorganisms. Readers will also find the latest insights into the preservation of vesicular-arbuscular (VA) fungi and ecology, diversity and conservation of endophytes, and entamopathogenic fungi. Microbes of animal and dairy origin, their preservation and biosafety issues are also explored. 
    Microorganisms are the silent and unseen majority of life on Earth, and are characterized by a high degree of genetic and metabolic diversity. It is well documented that no branch of science or society is unaffected by microbial interventions. Researchers have documented microorganisms from such extreme and unique environments as deserts and hydrothermal vents, and with specific traits that are currently being exploited in agriculture, industry, medicine and biotechnological applications. Such great potential can only be found in microorganisms. The aim of this book - the first entirely devoted to the conservation of microorganisms, and to regulatory mechanisms for access and benefits sharing as per Biological Diversity (BD) Act 2002 - is to promote awareness of our world's microbial wealth, and to introduce readers to strategies and methodologies for the conservation of microorganisms, which could ultimately save human life on Earth.

  • This book provides systematic information on the lychee and modern tools to promote its sustainable growth and development. Including dedicated chapters on the evolution and diversification of the lychee, it highlights its genetic makeup and reciprocal exogenous factors, addressing the narrow genetic pool and lack of natural biodiversity. It also discusses issues related to post-harvest losses and robust approaches at the commercial level. Further, the book offers insights on in vitro propagation methods and prospective transgenic approaches for selected lychee cultivars. Chapters on the production of bioactive compounds and their enhancement through genetic transformation and elicitation are also included, reflecting the latest advances in the field of lychee biotechnology. Lastly, the book explores the use of molecular marker techniques to achieve the desired improvements in fruit trees' medicinal and aesthetic value.

  • This book describes the vast variety of xenobiotics, such as pesticides, antibiotics, antibiotic resistance genes, agrochemicals and other pollutants, their interactions with the soil environment, and the currently available strategies and techniques for soil decontamination and bioremediation. Topics covered include: transport mechanisms of pollutants along the Himalayas; use of earthworms in biomonitoring; metagenomic strategies for assessing contaminated sites; xenobiotics in the food chain; phyto-chemical remediation; biodegradation by fungi; and the use of enzymes and potential microbes in biotransformation. Accordingly, the book offers a valuable guide for scientists in the fields of environmental ecology, soil and food sciences, agriculture, and applied microbiology.

  • This book provides in-depth reviews of the effects of nanoparticles on the soil environment, their interactions with plants and also their potential applications as nanofertilizers and pesticides. It offers insights into the current trends and future prospects of nanotechnology, including the benefits and risks and the impact on agriculture and soil ecosystems. Individual chapters explore topics such as nanoparticle biosynthesis, engineered nanomaterials, the use of nanoclays for remediation of polluted sites, nanomaterials in water desalination, their effect on seed germination, plant growth, and nutrient transformations in soil, as well as the use of earthworms as bioremediating agents for nanoparticles. It is a valuable resource for researchers in academia and industry working in the field of agriculture, crop protection, plant sciences, applied microbiology, soil biology and environmental sciences.

  • The paddy field is a unique agro-ecosystem and provides services such as food, nutrient recycling and diverse habitats. However, chemical contamination of paddy soils has degraded the quality of this important ecosystem. This book provides an overview of our current understanding of paddy soil pollution, addressing topics such as the major types of pollutants in contaminated paddy soil ecosystems; factors affecting the fate of pollutants in paddy soil; biomonitoring approaches to assess the contaminated paddy soil; the impact of chemicals on soil microbial diversity; and climate change. It also covers arsenic and heavy metal pollution of paddy soils and their impact on rice quality. Further, new emerging contaminants such as antibiotics and antibiotics resistance genes (ARGs) in paddy soil and their impact on environmental health are also discussed. The last chapters focus on the bioremediation approaches for the management of paddy soils.

  • This book offers a comprehensive compilation of biotic and abiotic factors that affect lychee production and commercialization. It addresses disease management for a range of causal agents, including the leaf mite (Acerya litchi Keifer), leaf miner (Conopomorpha cramerella), fruit borers (Conopomorpha cramerella, Platypeplus aprobola Meyer and Dichocrosis sp.), leaf webber / roller (Platypepla aprobola Meyer), litchi bug (Tessarotoma javanica Thunb), bark-eating caterpillar (Indarbela quadrinotata) and shoot borer (Chlumetia transversa), etc.Specialized chapters highlight potential approaches to optimizing and increasing the scope of lychee export, as well as systematic research on the development and refinement of technologies for enhancing lychee productivity and quality. Further aspects addressed include post-harvest handling, processing and value addition, the development of tolerant varieties, high yield and processing. As such, `Lychee Disease Management' offers a valuable resource dedicated to the global agriculture community, which is currently facing considerable production and commercialization problems.

  • This book describes the various applications of microorganisms in improving plant growth, health and the efficiency of phytochemical production.The chapters trace topics such as the role of PGPRs in improving salt stress and heavy metal tolerance in plants; the prevention and control of plant diseases; boosting soil fertility and agriculture productivity; the induction of secondary metabolite biosynthesis in medicinal and aromatic plants; the enhancement of phytochemical levels, and the action mechanisms, diversity and characterization of PGPRs. The reviews will be of interest for scientists in the fields of agriculture, microbiology, soil biology, plant breeding and herbal medicinal products.

empty